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Abstract—Recent advances in design of powered artificial legs
have led to increased potential to allow lower limb amputees to ac-
tively recover from stumbles. To achieve this goal, promptly and
accurately identifying stumbles is essential. This study aimed to 1)
select potential stumble detection data sources that react reliably
and quickly to stumbles and can be measured from a prosthesis,
and 2) investigate two different approaches based on selected data
sources to detect stumbles and classify stumble types in patients
with transfemoral (TF) amputations during ambulation. In the ex-
periments, the normal gait of TF amputees was perturbed by a
controllable treadmill or when they walked on an obstacle course.
The results showed that the acceleration of prosthetic foot can ac-
curately detect the tested stumbling events 140-240 ms before the
critical timing of falling and precisely classify the stumble type.
However, the detector based on foot acceleration produced high
false alarm rates, which challenged its real application. Combining
electromyographic (EMG) signals recorded from the residual limb
with the foot acceleration significantly reduced the false alarm rate
but sacrificed the detection response time. The results of this study
may lead to design of a stumble detection system for instrumented,
powered artificial legs; however, continued engineering efforts are
required to improve the detection performance and resolve the
challenges that remain for implementing the stumble detector on
prosthetic legs.

Index Terms—Detection, electromyographic (EMG), lower limb
amputees, prosthetics, stumble.

I. INTRODUCTION

T HE risk of falling for persons with lower limb amputa-
tions is high because of a combination of the following

two factors: 1) Lower limb amputations lead to altered balance,
strength, and gait pattern [1], [2]; 2) more than half of the pop-
ulation with lower limb amputations is elderly people (aged 65
years or older) [2], [3], for whom falls are one of the major
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causes of serious injuries [4]. It has been reported that falls
caused soft tissue injury, boney injury, deterioration in balance,
fear of falling, and reduced participation in activities of daily
living in patients with leg amputations [1], [2]. Therefore, solu-
tions are demanded to prevent falls in patients with leg amputa-
tions so that they can lead active lifestyles and have an improved
quality of life.
One of the potential solutions is to improve the safety of lower

limb prostheses. Focusing on transfemoral (TF) prostheses, cur-
rent microcomputer-controlled (MCC) passive prostheses in-
corporate a simple mechanism, i.e., locking knee joint when a
large deceleration of the prosthetic knee is sensed during the
swing phase, to improve the user’s walking stability and prevent
falls [5], [6]. However, dealing with various types of unexpected
perturbations during normal gait, such as slipping on a wet sur-
face, still present a significant challenge for leg amputees when
wearing the passive prostheses [7]. With the advent of powered
lower limb prostheses [8], [9], a much greater scope of capabil-
ities is now possible to allow the leg amputees to recover from
stumbles in a natural way. To achieve this goal, promptly and ac-
curately identifying stumbles elicited by different types of per-
turbations is essential so that the powered prosthesis can pro-
duce protective reactions corresponding to the stumble types.
Unfortunately, very limited studies have been reported on the

methods to detect and classify stumbles during normal gait for
artificial legs. A recent preliminary study [10] has demonstrated
a design of stumble detection method based on three accelerom-
eters, which is potentially useful for an intelligent transfemoral
prosthesis. The authors reported 100% detection accuracy; how-
ever, they only tested themethod on healthy subjects and studied
a particular case of stumbling during the swing phase. In addi-
tion, no false alarm rate (FAR) for stumble detection was shown,
while the FAR is an important parameter to evaluate the use-
fulness of the system for prosthesis use. Designing a stumble
detection system with high accuracy and a fast time response
is challenging. First, human corrective responses to perturba-
tions depend on the perturbation type (i.e., trip or slip) [11], [12]
and when the perturbation takes place during normal gait (i.e.,
gait phase) [12]–[14]. Previous studies have reported that an el-
evating strategy of perturbed leg was performed when healthy
subjects were tripped in early swing; a lowering strategy was
seen for mid and late swing perturbations [13], [14]. When a slip
happened, healthy subjects extended the joints of perturbed leg,
which contacted the ground presumably to deliver an impulse
thrust to counter the backward lean of the trunk [15]. Therefore,
the detection system is required to not only detect the stumbling
events but also recognize different stumble types to ensure the

1534-4320/$26.00 © 2011 IEEE



568 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 19, NO. 5, OCTOBER 2011

TABLE I
SUMMARY OF DEMOGRAPHIC INFORMATION FOR SEVEN RECRUITED SUBJECTS WITH TRANSFEMORAL AMPUTATIONS (TF01-TF07)

correct stumble recovery strategy applied. Another challenge
for stumble detector design is that the system must respond fast
enough to allow the prosthesis to recover from stumbles before a
fall happens. Furthermore, the designed detection system should
be practical for TF prostheses. It is desirable and practical if ap-
plied sensors can be integrated into the prosthesis or socket, and
the system calibration procedure is simple.
Motivated by the need to further improve the safety of pros-

thetic legs, we investigated new approaches to identify stum-
bles, which could be used to trigger the active stumble reaction
of transfemoral prostheses. The paper has two major sections.
Section I describes examination and selection of appropriate
data sources, which reliably and promptly respond to stumbles,
for stumble detection. Based on these potential data sources, in
Section II, we investigated different designs of a stumble detec-
tion system for transfemoral prostheses. The designed system
was evaluated on data collected from seven subjects with TF
amputations when they walked on a controllable treadmill or an
obstacle course. The results of this study may lead to an im-
proved design of powered artificial legs that actively deliver
stumble recovery, which in turn reduces the risk of falling in
lower limb amputees.

II. INVESTIGATION OF POTENTIAL DATA SOURCES
FOR STUMBLE DETECTION

A. Overview

To design an accurate and responsive stumble detector, it
is essential to find appropriate data sources that reliably and
promptly respond to different types of stumbles. Previous
studies on healthy subjects showed that perturbations during
normal gait led first to passive changes in the kinematics and
kinetics of the perturbed limb [13], followed by the neural re-
sponse measured via surface electromyographic (EMG) signals
[11], [13], [16], [17], and finally to the active correction of body
motions [12], [13], [18]. In this study, to make the stumble
detection system practical for prostheses, only the mechanical
variables and neuromuscular reactions of the residual limb,
which are measurable from the prosthesis or prosthetic socket,
were considered as the potential sources for stumble detection.

B. Methods

1) Participate andMeasurements: This study was conducted
with Institutional Review Board (IRB) approval at the Univer-
sity of Rhode Island and the Providence VAMedical Center and

with the informed consent of all subjects. Seven subjects with
unilateral TF amputations (TF01-07) were recruited; the demo-
graphic information for these TF amputees is shown in Table I.
Surface EMG signals from the thigh muscles surrounding the

residual limb were monitored. The number of EMG electrodes
(7–9) placed on the residual limb depended on the residual limb
length. The subjects were instructed to perform hip movements
and to imagine and execute knee flexion and extension. Bipolar
EMG electrodes were placed at locations, where strong EMG
signals could be recorded. The electrodes were embedded in
a customized gel liner for reliable electrode-skin contact. Am-
putee subjects rolled on the gel liner before socket donning.
A ground electrode was placed near the anterior iliac spine. A
16-Channel EMG System (Motion Lab System, US) was used
to collect EMG signals from all subjects. The EMG system fil-
tered signals between 20 Hz and 450 Hz with a pass-band gain
of 1000 and then sampled at 1000 Hz. The vertical ground re-
action forces were measured by a load cell (Bertec Corpora-
tion, OH) mounted on the prosthetic pylon and were also sam-
pled at 1000 Hz. Kinematic data were monitored by a marker-
based motion capture system (Oqus, Qualisys, Sweden). Light-
reflective markers were placed on the bilateral iliac crest, great
trochanter, and posterior superior iliac spine to monitor the mo-
tions of pelvis. To track the movements of lower limbs, four
nonaligned markers were placed on six lower limb segments
(i.e., prosthetic socket, pylon, and foot on the amputated side,
and thigh, shank, and foot of the unimpaired leg), respectively.
The markers’ positions were sampled at 100 Hz. In addition,
force-sensitive insoles (Pedar-X, Novel Electronics, Germany)
were placed under both feet to measure the center of pressure
(COP) for an evaluation purpose. Pressure data were sampled at
100 Hz. The experimental sessions were videotaped. The video
data were used to monitor the actual walking status of subjects
during the experiments. All data recordings in this study were
synchronized.
2) Experimental Protocol: Two sets of experiments were de-

signed and conducted.
Five subjects with TF amputations (TF01-05) participated in

the first experimental set. In order to design a detector capable
of indentifying stumbles and classifying the stumble types,
both trips and slips were induced. Various methods have been
used to simulate tripping [11]–[13], [18]–[20] and slipping [7],
[11], [15], [16], [19], [21], [22] in an effort to study the control
mechanisms underlying stumble and recovery during walking.
In this study, the perturbations were simulated by sudden
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Fig. 1. Designed treadmill speed profiles.

accelerations or decelerations of a treadmill belt (ActiveStep,
Simbex, Lebanon, NH) during walking. This type of perturba-
tion strategy 1) elicits stumble responses comparable to those
occurring in daily life [23], 2) minimizes anticipatory reactions
to a stumble, and 3) can be tested in a reproducible manner
[19]. The treadmill speed profile was easily programmed, as
shown in Fig. 1. The magnitude of acceleration or deceleration
was the same for all subjects. A trigger signal, sent from the
treadmill after the profile was initially executed, was used to
synchronize the treadmill speed profile with the other recorded
data. Five TF amputees used a hydraulic knee (Total Knee,
OSSUR, Frechen, Germany) and were given time prior to the
experiment to acclimate to the prosthesis and achieve a smooth
walking pattern. The subject wore a harness for fall protec-
tion when walking on the treadmill without any assistance.
A self-selected walking speed was determined first for each
subject. The average duration of swing phase was computed.
Ten trials with sudden treadmill accelerations and ten trials with
treadmill decelerations were tested. The perturbations involving
sudden belt accelerations were introduced in the swing phase
with certain delays (i.e., 20% and 65% of average duration
of swing phase) after toe off; the perturbations involving belt
decelerations were designed in the initial double-stance phase
(10 ms after heel strike). Most of the perturbations were applied
to the prosthetic leg; a few were applied to the unimpaired leg.
Only one perturbation was introduced in each trial in a random
selected gait cycle. The trials with perturbations ended in 15
s after the perturbation was delivered. To reduce the subjects’
ability to anticipate a perturbation, six walking trials without
any perturbation were included. The six walking trials and 20
trials with perturbations were conducted in a random order. In
addition, subjects conversed with an experimenter throughout
each trial in order to further distract subjects’ attention. Rest
periods were allowed between trials to avoid fatigue.
Another two subjects (TF06-07) participated in the second

experimental set, in which the subjects walked on realistic ter-
rains without control of walking speed. The collected data were
mainly used to evaluate the false alarm rate of designed stumble
detector and its feasibility for real application. The recruited
subjects were required towalk on an obstacle course, including a
level ground walking pathway, five-step stair, 10-foot ramp, and
obstacle blocks on the level ground. No perturbation was pur-
posely applied. The subjects were allowed to use hand railing
on the stairs and ramp and a parallel bar on the level ground.

In addition, an experimenter walked along with the subject to
ensure the subject’s safety. A total of 15 trials were tested for
each subject; in each trial the subjects walked on the obstacle
course continuously for approximately 5 min. Rest periods were
allowed during the testing.
3) Data Processing and Criteria for Data Source Selection:

EMG signals from the residual thigh muscles, acceleration of
prosthetic foot, vertical ground reaction force (GRF) measured
by the load cell on prosthetic pylon, and prosthetic knee angular
acceleration were investigated. The foot acceleration was com-
puted by the second order time derivative of position of a marker
on the prosthetic toe. The knee flexion/extension angle was de-
rived by the Visual3D software (C-Motion Inc., Germantown,
MD) and then low-pass filtered with the cutoff frequency at 20
Hz. The knee angular acceleration was calculated as the second
order time derivative of knee angle.
Three criteria were applied to determine the potential data

source for stumble detection. First, the selected data sources
must react fast enough to allow the prosthesis to recover from
stumbles before a fall happens. A previous study [24] reported
that the recovery action must occur before the center of mass
(COM)-center of pressure (COP) inclination angle exceeds
23 –26 of deviation from vertical; otherwise, falls might
happen. The COM-COP inclination angle in anterior–posterior
direction was defined as the angle formed by the intersection
of the line connecting the COP and COM with the vertical
line through the COP in sagittal plane [25]. Such an indicator
was estimated based on the inverted pendulum model that has
been used to quantify human balance [24], [25] and was used
to find the critical timing of falling in the present study. The
COM was estimated based on a human model with seven body
segments: head–arm–trunk (HAT), two thighs, two shanks, and
two feet [26], [27]. The mass of each segment was estimated by
using the modified Hanavan model described in [28]. The COP
positions were computed by using the Pedar-X software (Novel
Electronics, Munich, Germany). The critical timing (CT) of
falling was defined as the moment, at which the COM-COP
inclination angle exceeded a range of to 23 from ver-
tical. Therefore, the selected data sources for stumble detection
must react before this critical timing. Second, the data sources
that consistently show obvious reactions to various types of
perturbations were considered reliable and were preferred for
accurate stumble detection. Thirdly, the data sources that can
indicate the type of stumbles were selected because the reactive
control strategy of artificial legs to stumbles also depends on
the stumble types.

C. Results

Fig. 2 shows the recorded data in two representative trials
when TF01 walked on the treadmill. Studied data sources
were aligned with the treadmill speed profiles and calculated
COM-COP inclination angle. When a tripping was induced
in a swing phase of amputated side [Fig. 2(A)], an obvious
response of the foot acceleration in anterior–posterior direction
was first observed, approximately 120 ms before the critical
timing [green arrow in Fig. 2(A)], quickly followed by the
pattern change in knee angular acceleration ( ms before
the CT) and EMG response ( ms before the CT). The
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Fig. 2. Examples of collected data sources aligned with treadmill speed profiles
and computed COM-COP inclination angle. Representative data were recorded
from TF01.

pattern change of vertical GRF was slightly after the CT. When
a slip happened in initial double-stance phase of the prosthetic
side [Fig. 2(B)], the foot acceleration also responded first right
after the change of treadmill speed ( ms before the CT),
then followed by the GRF pattern change ( ms before the
CT) and the muscle response ( ms before the CT). The
response in knee angular acceleration was after the CT.
During the second set of experiments, although we did not

purposely perturb the subjects’ gait, one slip occurred when
TF06 descended the stair, two trips were captured when TF07
stepped over an obstacle block and performed stair ascent task,
and two slips were caught when TF07 descended staircases. The
slips during stair descent were caused by inadequate placement
of prosthetic foot during the initial contact. TF07 was tripped
by the obstacle block and staircase during the swing phase of
amputated limb. Since the TF patients used railing or were pro-
tected by parallel bars and experimenters, no fall happened in
the experiments. Fig. 3 showed two examples of recorded data
during tripping and slipping when TF07 walked on the obstacle
course. During tripping [Fig. 3(A)], an obvious foot decelera-
tion and deceleration in knee angle was observed around 260
ms before the CT. The EMG responses were 160 ms ahead of
the CT. The pattern change of GRF was around 60 ms before

Fig. 3. Examples of collected data sources when TF07 walked on the obstacle
course. The red dotted vertical lines highlight the timings of data reaction. The
green arrow indicates the critical timing (CT) of falling.

the CT. During slipping [Fig. 3(B)], the foot acceleration re-
sponded fastest ( ms before the CT). The GRF pattern
change happened at ms before the CT, and the EMG sig-
nals responded around ms before the CT. The knee an-
gular acceleration reacted to the perturbation after the CT.

D. Discussion

Stumbles were observed when our recruited TF amputees
walked on the designed obstacle course although no pertur-
bation was purposely applied. This observation indicates that
stumbling is common in patients with lower limb amputations
when they negotiate with uneven terrains. In addition, all the
observed stumbles originated from the amputated side of the
limb, which either collided with the obstacle/staircase or slipped
on the edge of staircase. Unfortunately, very limited study has
been found in the literature that surveys lower limb amputees
about the type of negotiating terrains and perturbations that
cause most of stumbles in their daily lives. Understanding the
most frequently occurring types of stumble in leg amputees
would be extremely useful for future design of a safety system
for lower limb prostheses for fall prevention.
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The foot acceleration is selected as the best data source for
stumble detection and classification because it satisfied all three
selection criteria defined in this study. The acceleration of pros-
thetic foot responded fastest to all applied perturbations with an
obvious change in magnitude. Additionally, its direction was as-
sociated with the stumble types. The waveform pattern changes
of knee angular acceleration and vertical GRF were also ob-
served during stumbling; however, their reaction time to the
perturbations depended on the stumble types (i.e., trip or slip
and when the perturbation takes place in gait cycle). For some
cases, these two data sources presented obvious signal pattern
changes after the defined critical timing of falling, and therefore,
should not be considered for stumble detection. The residual
muscles clearly showed significantly high activation level, long
activation duration, and co-contraction during stumbling, con-
sistent with those observed in able-bodied subjects [13], [19].
The timing of observed neural reactions was around 160 ms
after the initial treadmill perturbations and was approximately
100 ms after the perturbations when the subjects walked on the
realistic terrains. This difference in reaction time may be caused
by the magnitude of perturbations. In addition, the neural re-
sponses of amputees in the residual thigh muscles were slower
than those of able-bodied subjects (90–140 ms) reported in the
previous study [16], which could be partially attributed to the
loss of perception in the distal limb.
The reactions of foot acceleration were approximately

100 ms faster than EMG responses, although both data sources
responded before the defined critical timing. Therefore, in order
to detect stumbles with quick response time, foot acceleration
should be preferred. One of the potential drawbacks in using
foot acceleration is that a sudden acceleration or deceleration
of the prosthetic foot may not necessarily be correlated to a
stumble, while co-contraction of muscles in the thigh with
high activation levels may accurately indicate the protective
neural response to balance disturbances. Therefore, in the next
section, we considered both foot acceleration and EMG signals
as the potential stumble detection sources and investigated and
evaluated two approaches for stumble detection.

III. DESIGN AND EVALUATION OF STUMBLE DETECTORS

A. Architecture of the Stumble Detection System

Since our ultimate goal is to design a stumble detection
system that can trigger the protective reaction of artificial legs
for stumble recovery, the outputs of this system should tell
whether or not there is a stumble and type of the stumble (e.g.,
trip in early swing and slip in initial double stance). Therefore,
a stumble detection system consisted of two modules: a stumble
detector and stumble classifier (Fig. 4). The first output was
used to initialize the stumble recovery action of artificial legs.
The classified stumble type together with the state of prostheses
(i.e., current joint position and external forces applied on the
prosthesis) can determine the stumble recovery strategy to be
applied because the stumble recovery strategy varies depending
on the stumble types.

Fig. 4. Architecture of stumble detection system.

Fig. 5. Two designs of stumble detector.

B. Methods

1) Design of Stumble Detector: In this study, two designs of
stumble detector (Fig. 5) were investigated. Since the reaction of
foot acceleration was fastest among investigated data sources,
the foot acceleration was considered as the primary data source
for stumble detection in both designs.
The first design [Fig. 5(A)] was based on the absolute mag-

nitude of foot acceleration in anterior–posterior direction. A de-
cision was made every 10 ms based on each sampled data. In
the second approach, the foot acceleration and EMG signals
recorded from residual thigh muscles were fused hierarchically
to detect stumbles [Fig. 5(B)]. The acceleration-based detector
was assigned as the level 1 detector and designed the same as
the detector in Fig. 5(A). The EMG-based detector was the sec-
ondary detector (the level 2 detector), which was activated when
a gait abnormality was identified by the level 1 detector. In the
level 2 detector, raw EMG inputs were first band-pass filtered
between 25 and 400Hz by an eighth-order Butterworth filter and
then were segmented by overlapped sliding analysis windows
(150 ms in length and 10 ms increments). Since the EMG reac-
tions to perturbations were characterized by increased magni-
tude and synchronized activation across multiple muscles com-



572 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 19, NO. 5, OCTOBER 2011

pared to normal gait EMGs (Figs. 2 and 3), EMGmagnitude was
used for stumble detection and was estimated by the root mean
square (rms) [29]. For each EMG channel, a sub-detector was
designed to make a decision based the magnitude of this EMG
signal in each analysis window. Next, a majority vote principle
was used to determine the output of the level 2 detector. That is
to say, if more than half of EMG signals presented larger magni-
tudes than the detection thresholds designed for individual EMG
channels, the output of the level 2 detector was a decision of an
abnormal gait. This was because the observed EMG reactions
to perturbations were synchronized across the tested muscles in
the thigh (Figs. 2 and 3). Such a design can eliminate false de-
tections caused by the abnormal signal recordings in just one
or a few number of channels, unrelated to the stumbling. Since
one decision was made in one analysis window, the decision of
level 2 detector was updated every 10 ms, aligned with the deci-
sion of level 1 detector. Finally, a stumble was detected if both
level 1 and level 2 detectors identified the gait as abnormal.
The foot-acceleration-based detector and EMG sub-detectors

were formulated as outlier detectors and composed of the fol-
lowing hypotheses: 1) the walking status is normal , and
2) the status is abnormal . For the design that used foot ac-
celeration only [Fig. 5(A)], the detection of abnormal gait was
equivalent to stumble detection. The data model for the normal
gait was built first; any observation located far from the
center of the data model of was considered an outlier and
detected as an abnormal case . Mahalanobis distance [30],
a widely used method for outlier detection, was employed to
quantify the geometric distance between the observation
and the mean of the observations in , and can be de-
fined by

(1)

where is the standard deviation of the observations in .
The criterion to test detection hypothesis was

(2)

In this study, a single dimensional observation was used for
the foot-acceleration-based detector (i.e., absolute value of foot
acceleration in anterior–posterior direction) and EMG sub-de-
tectors (i.e., rms of an EMG signal), respectively. We investi-
gated different detection threshold for each studied data source
and selected the optimal thresholds based on the receiver oper-
ating characteristic (ROC) to minimize the detection errors (i.e.,
the detection missing rate and false alarm rate). In the typical
approach for detecting outliers based on Mahalanobis distance,
the observations are assumed to follow a normal distribution.
Therefore, the square of Mahalanobis distance is compared with
a threshold formulated in terms of chi-square distribution
[30]. Since in this study the histogram of observations in did
not follow normal distribution well, the detection threshold was
formulated by

(3)

where is the maximum value of Maha-
lanobis distances derived from observations in . Such a max-
imum value has been used as the outlier detection threshold [31],

[32] to ensure all the data considered as were within the de-
tection boundary. in (3) is a scale factor . The detec-
tion threshold was optimized by adjusting the value. It is note-
worthy that the same value was selected for individual EMG
sub-detectors in all recruited subjects because customizing the
optimal thresholds requires the knowledge on residual muscles’
responses to stumbles in individual patients, which are usually
impractical to obtain in real application. The mean , stan-
dard deviation , and were estimated
based on the observations collected from the trials without any
perturbations. Then the ROC was computed based on data col-
lected in half of the treadmill trials with perturbations for op-
timal threshold (i.e., the values) selection. Note that once the
values are determined, in real application the choice of the

detection threshold only requires data collected during normal
walking.
2) Stumble Classification: In this study, three-class classifier

were designed to identify 1) tripping in early swing phase, 2)
tripping in late swing phase, and 3) slipping in initial double-
stance phase. These three classes were studied because they
were most frequently occurred and resulted in different stum-
bling recovery strategies in healthy subjects [16], [18].
The stumble classifier was activated only when a stumble was

detected. A decision tree was designed to classify the stumble
types. Based on Figs. 2 and 3, the direction of foot accelera-
tion was associated with tripping (sudden deceleration of foot
swing) and slipping (sudden forward acceleration of the foot);
therefore, the direction of foot acceleration was used at the first
decision node to separate tripping, i.e., classes 1 and 2, from
the slipping, i.e., the class 3. The second decision node took
the instantaneous output from gait phase detector to identify the
gait phase when tripping was identified; therefore, the type 1
and type 2 tripping can be separated. The gait phase detection
module received inputs from vertical GRF and knee joint angle,
both of which were measured in current MCC prostheses, and
determined gait phase continuously. In the presented study a
stride cycle was divided into three phases: stance phase, early
swing phase, and late swing phase (Fig. 6). When the vertical
GRF measured from prosthetic pylon was greater than a contact
threshold (1% ofmaximumGRF), a stance phase was identified.
During the swing phase, if the knee angular velocity is greater
than zero, the early swing was detected. Otherwise, the output
phase was the late swing. The criterion for the gait phase detec-
tion was shown in Fig. 6.
3) Detection Performance Evaluation: The performance of

stumble detector was evaluated by the detection sensitivity (SE)
in (4), false alarm rate (FAR) in (5), and remaining time (RT) of
stumble recovery

(4)

(5)

The remaining time (RT) of stumble recovery was defined in (6),
as the time elapsed between the moment of detecting a stumble
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Fig. 6. The criteria for gait phase detection. The contact threshold was 1% of
maximum vertical ground reaction force measured from individual subjects.

and the critical timing of falling that was deter-
mined by the COM-COP inclination angle. The positive RT in-
dicated the detection of a stumble was before the critical timing,
which allowed for activation of prosthesis control for stumble
recovery. Therefore, the large RT was desirable

(6)

In addition, when stumbles were accurately detected, the accu-
racy (CA) in classifying the stumble types was quantified as in
(6). The actual stumble type (ground truth) was determined by
experimental videos

(7)

The stumble detection system was built based on the data col-
lected from treadmill walking trials without any perturbations
and designed optimal values in (3); it was evaluated by data
collected from the treadmill trials with simulated trips applied
in the swing and slips applied in the initial heel contract of am-
putated side and the trials when the subjects walked on the ob-
stacle course. Note that the data in the trials, used for defining
the optimal values, were not included for evaluation. Since no
perturbation was purposely applied in the second experimental
set, if no stumble occurred during the testing, the gait status was
considered normal regardless of the type of negotiating terrains,
and only FAR was quantified.

C. Results

1) Detection Threshold Selection: When optimizing the de-
tection threshold (i.e., value) for the foot-acceleration-
based detector, we found that the detection sensitivity (SE) was
100% for TF01-05 when was less than 1.3 (Fig. 7). There-
fore, the optimal value was 1.3 for detection threshold
design because it produced 100% sensitivity and a minimum
false alarm rate (FAR) at the meantime. Fig. 8 shows the false
alarm rates for TF01-05 when the scale factor of EMG
sub-detectors changes. The sensitivity was not shown because
the detection sensitivity was 100% when the was in the
range of 1–1.8. The false alarm rate was reduced to 0% when
the was 1.8 for all five TF subjects. Therefore, the op-
timal threshold was chosen when was 1.8. The optimal

and value were used for the following evaluation
of detection performance.
2) Performance of Stumble Detection and Classification:

Fig. 9 shows the performance of designed stumble detectors.

Fig. 7. Influence of hypothesis testing threshold (represented as the value of
scale factor ) on sensitivity and false alarm rates derived from the ac-
celeration-based detector. Results were derived from data collected from 5 TF
amputees (TF01-TF05) when they walked on a treadmill.

Fig. 8. Influence of hypothesis testing threshold (represented as the value of
scale factor ) on the false alarm rates (FAR) derived from the level 2
detector with multiple EMG subdetectors. Results were derived from data col-
lected from 5 TF amputees (TF01-TF05) when they walked on a treadmill.

The SE and CA derived from two designs were not shown
because they were 100%, which means the tested stumbles
were correctly detected and classified for all the subjects. For
the tests on the treadmill (TF01-TF05), when using both the
foot acceleration and the EMG signals (black bars in Fig. 9),
the stumble detector produced 0%–0.0009% FAR (i.e., from no
false stumble detection to one false decision in 18.5 min), which
was significantly lower than 0.0035%–0.0085% FAR derived
from the detector based on the acceleration only (gray bars
in Fig. 9); however, the remaining time for stumble recovery
based on multiple data sources was 70–180 ms shorter than
that derived from the detector based on acceleration alone. The
response of foot acceleration to slips was around 230 ms before
the critical timing, while the response to trips was 140 ms
before the CT. This difference in reaction time was because
the perturbation simulating slips was directly applied to the
prosthetic foot, while the perturbation simulating trips was



574 IEEE TRANSACTIONS ON NEURAL SYSTEMS AND REHABILITATION ENGINEERING, VOL. 19, NO. 5, OCTOBER 2011

Fig. 9. Comparison of the performance of the first design of the detector (based
on the foot acceleration only) and the second design (based on both accelera-
tion and EMG signals) for transfemoral amputees (TF01-TF07). *denotes FAR
equals 0. means no stumbling was captured.

applied to the unimpaired foot on the treadmill. For the tests
on the obstacle course (TF06-TF07), the results again showed
that integrating the detection decisions from both data sources
significantly reduced the FAR, but sacrificed remaining time
of stumble recovery by approximately 80 ms. Compared to the
results derived when the subjects walked on the treadmill, the
results derived when the subjects walked on an obstacle course
demonstrated 1) high false alarm rate, 2) early detection of trips
for both detector designs, and 3) early stumble detection when
both EMG signals and foot acceleration were used.

D. Discussion

Acceleration of prosthetic foot was sufficient to detect the
stumbles captured in this study with fast time response. If com-
bined with the identified gait phase detected based on vertical
GRF and knee angle, the foot acceleration can be also used
to accurately classify trips in the early swing, trips in the last
swing, and slips at the initial heel contact. However, the foot-
acceleration-based stumble detector produced high false alarm
rate, which might challenge its real application. For example,
the worst FAR of acceleration-based detector in this study was

% for TF07 (Fig. 9). Since the decision was made every
10ms, that means every 1.6min theremay be one false detection
decision. If such false decisions directly trigger the stumble re-
action in prostheses, the designed stumble detection system will
actually disturb the normal walking instead of improving the
walking safety of leg amputees. The high false alarm rate partly
resulted from the fact that the detector was formulated as an out-
lier detection task. The benefit of such a design is that the initial
calibration of detection system [i.e., the procedure to determine
the hypothesis testing threshold in (2)] is independent from the
data collected during stumbling. That is to say, to find the detec-
tion thresholds, only the data collected from normal walking are
needed, which makes the calibration procedure simple and prac-
tical. The disadvantage of outlier-based detection is that it pro-
duced high FAR because the outliers of foot acceleration may
be elicited by situations other than balance perturbations. For
example, large decelerations of prosthetic foot were observed

during the weight acceptance when TF amputees stepped over
an obstacle, which caused false detection of stumbles.
There are several solutions to reduce the false alarm rate. In

this study, we presented one way to decrease FAR of acceler-
ation-based stumble detector by fusing a secondary detection
decision from another data source (i.e., EMG signals) that reli-
ably responds to stumbles. This is because simultaneously de-
tecting outliers from multiple data sources sensitive to stumbles
increases the possibility that normal gait has been interrupted
by balance perturbations. The stumble detector based on both
acceleration and EMG signals produced no false decision for
the data collected from TF01, TF03, TF04, and TF05 and FARs
equivalent to one false decision in every 18.5, 12.8, and 8.3 min
walking for TF02, TF06, and TF07, respectively. The FARs ob-
served in the latter three subjects may still challenge the prac-
tical value of designed stumble detectors; additional methods
might be considered to further decrease the FAR. One solution
is to include data from different ambulation activities beyond
level-ground walking when modeling normal gait for the
stumble detector. In addition, other outlier detection algorithms
and additional mechanical measurements from the prosthesis,
which present quick passive responses to stumbles, can be in-
vestigated to further minimize the false detection rate.
Although the stumble detector based on both EMG signals

and acceleration reduced the false alarm rate, it sacrificed the
remaining time of stumble recovery by 70–150 ms, compared
to the detector based on acceleration only. This is because
the neural reactions observed were slower than the passive
mechanical responses. In addition, the EMG response of am-
putees is slower than that in healthy subjects, partly due to the
peripheral sensory loss. It would be interesting to investigate
whether or not the artificial sensory feedback can quicken the
neural response in leg amputees and detection of stumbles. For
both the tripping and slipping trials, the delayed response was
only around 50 ms before the critical timing of falling defined
based on a simple inverted pendulum model. Whether or not
this response is fast enough to activate protective responses in
prostheses and arrest a potential fall is unclear. In addition, we
utilized a simple mechanical model to define the critical timing,
which may not be accurate to quantify the human walking
balance. For instance, when computing the COM, we ignored
the function of arms. Actually, the upper limbs have been
reported to play an important role for maintaining the balance
during stumbling [33]. Therefore, further studies might be
necessary to 1) accurately define the required response time for
stumble detection based on other complex mechanical models,
such as the feedback model [34] or the neurobiological model
[35], or parameters for quantifying the walking balance, such
as whole-body angular momentum [36], and 2) quantify the
duration necessary for the prosthesis to build joint torque and
react to stumbles.
Another problem in using the acceleration of prosthetic foot

as the primary source for stumble detection is that the detector
maymiss the stumbles when the passivemechanical changes are
not presented on the prosthetic side of legs. In this study only
three types of perturbations were studied and were believed to
be the often occurring perturbations for stumbling in leg am-
putees. These types of perturbations led to obvious and quick
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passive mechanical responses in foot acceleration. However, in
the real situation, there are possibilities that perturbations are
applied to the unimpaired leg. For instance, the sound leg may
be tripped by an obstacle. In this case, fast passive foot decel-
eration will not be observed at the amputated side; therefore,
the design based on the acceleration of prosthetic foot may miss
the detection of this stumble or misclassify the stumble type.
One possible solution is to place an accelerometer on the unim-
paired foot, which, however, requires users to wear an additional
sensor on the unimpaired leg and increases the system com-
plexity. Interestingly, the perturbations induced by the tread-
mill applied on the unimpaired leg also clearly elicited the re-
actions in muscles of the amputated leg; the remaining time of
stumble recovery was ms, similar with that observed in
the trials when the perturbations were applied to the amputated
side, which implies that the observed protective neural response
may be elicited by the long-loop reflex. Therefore, if the EMG
responses are sufficiently fast for prostheses to react, the EMG
signals may be the potential data sources for stumble detection
when perturbations happen on the unimpaired leg. Although re-
lying on the EMG signals only may be inadequate for iden-
tifying the stumble type (trip or slip), it can at least activate
the artificial leg to execute a certain action (e.g., increasing the
knee joint impedance during the stance phase) to stabilize the
user’s balance. In addition, it is interesting to study the min-
imum number of EMG signals required for maintaining the de-
tection accuracy and reaction time.
There are several limitations in using the treadmill to simulate

trips and slips for stumble detection design. First, in simulation
of tripping, the perturbation was applied to the stance leg in-
stead of the swing leg. Therefore, although the passive reaction
of acceleration of prosthetic foot was observed when simulated
trips happened in the swing of unimpaired leg, this reaction may
not be presented in the real situation. Secondly, the EMG re-
sponses to stumbles observed in the tests on the treadmill were
60 ms slower than the responses in the tests on the obstacle
course. This observation may imply that the applied sudden
treadmill accelerations/decelerations are not strong enough to
simulate the perturbations in real world. Thirdly, during the
normal walking, the speed of the treadmill was well controlled,
and the recorded normal walking data were relatively consis-
tent. Therefore, much lower FAR was observed than the FAR
derived from the tests conducted on the obstacle course. The
performance of designed stumble detection should be evalu-
ated on TF amputees in the future when different magnitudes
of treadmill perturbations are simulated. Additionally, an im-
proved experimental design should be considered to elicit more
realistic balance perturbations.
In the presented study, we investigated potential data sources

and designs for accurate and prompt stumble detection that not
only detects stumbling events but classifies trips and slips hap-
pening in different gait phases. The results can advance the
further design of a stumble detection system that can be inte-
grated into self-contained, powered artificial legs, activate the
protective control of prostheses for stumble recovery, and there-
fore, improve the safety of patients with lower limb amputations
during ambulation. For example, when a trip of prosthetic leg
in early swing is identified, and the prosthetic leg is currently

swinging, the prosthesis control can further flex the knee joint
to clear the prosthetic foot from the tripping object (i.e., ele-
vating strategy). Obviously, this stumble recovery involves the
posture control of amputees (e.g., hip flexion) and prosthesis re-
action. Hence, investigating the stumble recovery strategies of
leg amputees, designing recovery strategies for prosthesis con-
trol, and developing effective therapeutic training are demanded
in the future to further reduce the risk of falling of lower limb
amputees.

IV. CONCLUSION

This study demonstrated the investigation towards design of
a stumble detection system for powered artificial legs, which
might permit the active reaction of prosthetics for stumble re-
covery and, therefore, reduce the risk of falling in leg amputees.
We first studied and selected potential stumble detection data
sources that react reliably and quickly to stumbles and can be
measured from a prosthesis. The results demonstrated the accel-
eration of prosthetic foot wasmost responsive, and EMG signals
from residual limb reacted significantly and consistently regard-
less the type of the perturbations. Then, two approaches based
on these two data sources were used for identifying stumbles.
The results showed that foot acceleration was sufficient to de-
tect all the stumbling events applied to the amputated side accu-
rately and responsively. Fusing EMG signals into the foot-accel-
eration-based detection significantly reduced the detection false
alarm, but sacrificed the remaining time of stumble recovery.
The results of this study can guide the further optimization of
stumble detection design for power prosthetic legs.
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